skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wood, Leo J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Flying insects solve a daunting control problem of generating a patterned and precise motor program to stay airborne and generate agile maneuvers. In this motor program, each muscle encodes information about movement in precise spike timing down to the millisecond scale. Whereas individual muscles share information about movement, we do not know whether they have separable effects on an animal's motion, or whether muscles functionally interact such that the effects of any muscle's timing depend heavily on the state of the entire musculature. To answer these questions, we performed spike-resolution electromyography and electrical stimulation in the hawkmoth Manduca sexta during tethered flapping. We specifically explored how flight power muscles contribute to pitch control. Combining correlational study of visually induced turns with causal manipulation of spike timing, we discovered likely coordination patterns for pitch turns, and investigated whether these patterns can drive pitch control. We observed significant timing change of the main downstroke muscles, the dorsolongitudinal muscles (DLMs), associated with pitch turns. Causally inducing this timing change in the DLMs with electrical stimulation produced a consistent, mechanically relevant feature in pitch torque, establishing that power muscles in M. sexta have a control role in pitch. Because changes were evoked in only the DLMs, however, these pitch torque features left large unexplained variation. We found this unexplained variation indicates significant functional overlap in pitch control such that precise timing of one power muscle does not produce a precise turn, demonstrating the importance of coordination across the entire motor program for flight. 
    more » « less
    Free, publicly-accessible full text available December 15, 2025